Motion-Logic Programming Interface

Presentation Structure

- Introduction & Motivation
- Design & Implementation
- Summary & Outlook

Motion-Logic Programming Interface

Application Example (HFFS-Machine)

Cross-Cutter
Shoulder
Conveyor

Unloading Conveyor
Finwheel
Motion Controller

Motion Controller Issues

- Motion Controller (option 1)
 - Legacy hard- and software
 - Proprietary µC hardware
 - Real-time operating system
 - Software coded in C/C++ or similar
 - Proprietary fieldbus interfaces
- Disadvantages
 - Development efforts and cost
 - Adaptation of new technologies
 - Obsolescence of components

- Motion Controller (option 2)
 - Standard hard- and software
 - Industrial PLC and software environ.
 - Software coded IEC 61131 or other PLC programming language
 - Standard fieldbus interfaces
- Disadvantages
 - IEC code is automation technology
 - Technology gap between automation business and computer science

Source: Bosch Rexroth AG
Motion-Logic Programming Interface

Objective

Presentation Structure

- Introduction & Motivation
- Realisation & Implementation
- Summary & Outlook

System Interface Requirements
Motion-Logic Programming Interface
User Application Requirements

- Motion control application requirements
 - High precision **synchronous threads**
 - In particular for equidistant setpoint generation and communication
 - **Asynchronous threads** for non-motion tasks
 - Not necessarily in synch with the motion bus
 - Improves system performance
 - **Free running threads**
 - For low priority tasks

Motion-Logic Programming Interface
Performance Levels Requirements

- **Control**
 - Hardware A
 - Firmware A
 - PLC with Fieldbus Master
 - Standard Motion
 - Basic Technology Func.
- **Robotics & Kinematics**
 - Advanced Technology Func.
 - Standard Motion
 - Standard Motion

Motion-Logic Programming Interface
Derived Design Requirements for the Interface

- Design requirements:
 - Independency from the programming language
 - Well tailored layer architecture
 - Structured according to functionality
 - Object oriented design approach
 - Network support
 - High performance
 - Small footprint and multi-instance capability

Motion-Logic Programming Interface
MLPI Architecture
Motion-Logic Programming Interface
MLPI Structure in Libraries (1)

- Administrative functions
 - API library
 - Connect and disconnect the interface
 - System library
 - System settings and configuration
 - Device library
 - SERCOS devices and configuration

- PLC functions
 - Task library
 - Creating, destroying and configuring tasks
 - InOut library
 - Direct or symbolic access to fieldbus data and data exchange buffers
 - PLC library and Watchdog library
 - Load, start, stop and supervise PLC applications

Motion-Logic Programming Interface
MLPI Structure in Libraries (2)

- Motion functions
 - Parameter library
 - Parameter access to controls and drives
 - Read, write and modify single parameters as well as list parameters and attributes
 - Motion library
 - Create and destroy real axis or virtual axis
 - Parameterization of axis properties
 - Commanding axis with discrete motion, continuous motion and synchronous motion command
 - Robot library
 - Group and ungroup axis to configure kinematics
 - Load, select and execute robot control applications including

Motion-Logic Programming Interface
Deployment Diagram

Motion-Logic Programming Interface
Presentation Structure

- Introduction & Motivation
- Realisation
- Summary & Outlook

Source: Bosch Rexroth AG
Motion-Logic Programming Interface
Summary & Outlook

- Motivation for the coexistence of IEC code and C/C++ code
 - migration purpose of existing legacy applications
 - interfaces for research and scientific applications to standard automation environments
- Broad range of functionality implemented for
 - single axis motion
 - synchronized axis motion
 - coordinated motion for robots
- Implementation of high level interfaces for rapid prototyping and system engineering