
Automation Solutions for Human Labor Intensive Tasks in Wiring Harness Manufacture

Onur Tavsel
Delphi Automotive Systems, Process Engineering, Izmir, Turkey

INTRODUCTION

A wiring harness consists of connectors, terminals, wires, and the additional components for fitting in the vehicle and protection against medium conditions.

Competency Descriptor
Security Classification (edit in Header and Foote

INTRODUCTION

DELPHI AUTOMOTIVE SYSTEMS

Turkey:

Global: 133.000 Employees in 138 Production sites
EMEA: 47.000 employees in 52 production sites
Turkey: 6000 employees in 3 Production sites

R&D - Automation Scopes;

- · 0,13mm² cable production
- · In-door transportation by AGV's
- · Automatic plugging
- Material Handling

Competency Descriptor

Automatic Fuse Torque Station

Manuel Method

- •Manual spindle positioning
- •Manual loading / unloading of work piece
- •3D positoning measurement and control •Manual feeding of nuts to the spindle
- •Electrical continuity test

Drawbacks of manuel operation

- •Cycle time of operation depends on operator capability & experience
- Instable quality output
- •Fully labor intensive task

Renault X98 Eng. Room Harness	Current Time	New Time
Screwing operation (sec)	20	20
Harness preparation (sec)	90	38
Total time (sec)	110	58
Total time (min)	1,83	0,96
Improvement in cycle time	48%	

Competency Descriptor

Security Classification (edit in Header and Foots

Automatic Fuse Torque Station

Automation application

·Manual loading / unloading of work piece

Automatic spindle positioning

Automatic 3D positoning measurement and control

·Automatic feeding of nuts to the spindle

·Electrical continuity test

Advantages of automation

·High level of repeatibility

·Flexibility against engineering changes

Guides and rails	25 mm-H shaped
Taransmission	25x5 threaded shaft
Axial velocity	250mm/sec
Vertical axis payload	1,2 kg
Motors	2.4 Nm servo motors
Controller	MLC 32 DL 32 DO

•2D cartesian system actuated by servo motors for positioning the fuse box

*Stationary structure provides the vertical movement of

•Nuts are conveyed beneath the spindle by vibration feeder in the correct alignment

·Magnetic nut holder

·System operates in a safety cell

Competency Descriptor Security Classification (edit in Header and Footer)

Automatic Relay and Fuse Plugging

Automation application

- ·Automatic insertion of relays and fuses by a conventional scara type robot
- •Components are fed by vibrating containers at the right
- . Software gurantees the assembly correct part to the
- *Build-in camera provides error-proff handling
- ·System eliminates an additional camera control station

Model	IX-NNN6020-5L-KETX-P1-EEE-2-2 Scara Robot
Reach (radius)	600mm
Standard Cycle Time	0.52s
Payload	2kg @max. Speed - 10kg m@ max. Load
Speed	XY: 7121mm/s - Z: 1393mm/s - R: 1200o/s
Positional Renetability	XY: ±0.01mm - Z: ±0.01mm - R: ±0.005o/s

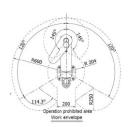
Competency Descriptor

Automatic Relay and Fuse Plugging

Manuel Method

Competency Descriptor

•Relays and fuses are manually plugged to the terminals and connectors


•The correct position and type of the component is controlled and verified by an additional camera control system

Drawbacks of manuel operation

·Success of operation depends on human capability & experience

- •Health and safety issues arise due to repeatetive operation
- •Relatively high level of mistakes
- •Process inspected at the last station
- ·High equipment investment
- ·Synchronicity difficulties
- •Time and labor waste due to transportation between stations

Automatic Relay and Fuse Plugging

Advantages of automation

- ·High level of repeatibility
- •Elimination of H&S issues
- In process control (check/apply/check) ·Flexibility against engineering changes
- ·Single station
 - ·Low floor space allocation •Elimination of transportation labor
 - . Decrease in terms of component
 - damage

	Manual	Automation	
Relay Plugging	5		
Fuse Plugging	3		
Total Relay&Fuse Plugging time	177	12	
Total Relay&Fuse Plugging time	2,95	2,0	
Camera Control (sec)	30	х	
Load/Unload components (sec)	30	3	
Total time (sec)	237	15	
Improvement in cycle time		36%	
Manual labor	237	3	
Labor saving		87%	

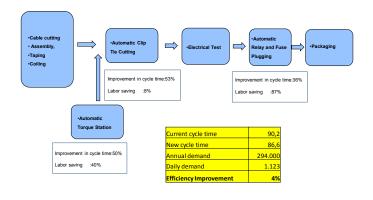
Competency Descriptor

Automatic clip tie cutting

Manuel Method

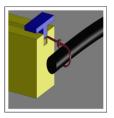
Competency Descriptor Security Classification (edit in Header and Footer)

Competency Descriptor


- ·Clips are used to attached the harness on the vehicle body.
- In order to assure the correct position on the cable bundle, clips cut manually on the production boards by the operators.
- · Operators use a cutting gun activated by hand force or pneumatically.
- •The tightness and cutting length is controlled by
- ·Some holders have electrical presence test

Drawbacks of manuel operation

·Some clip ties has irregular orientations making the cutting operation difficult or impossible


- ·Losing time for handling the clip cutting gun.
- •H&S issues due to repeatitive triggering operation

Overall Process Flow & Improvement

Automatic clip tie cutting

Automation application

- •The extremity of clip tie is inserted into the lock and holder by the operator, holder pulls the tie inside and cuts at the correct tightness.
- ·Position and limit sensor system verifies the correct tightning force and correct cutting length of clip tie
- •Pneumatic actuator to pull and tighten the tie
- ·Pneumatic actuator blade to cut the tie
- •Adjustable tightening force between 50N 200N
- ·Electrical presence test on holder

Advantages of automation

. Possibility to cut the clips that have problematic orientations

- (clip direction towards the board)
- ·Elimination of H&S issues
- ·Elimination of damages due to incorect handling
- Operator time saving

Competency Descriptor Security Classification (edit in Header and Footer)

enault X98 Eng. Room Harness

Regular Retainer/Clip

Irregular Retainer/Clip Total time (sc)

Total time (min)

Thanks...