

Experience with International Students' Project Work in Model Based Design 12th REM Kocaeli 2011

Content

- 1. Merseburg University of Applied Sciences
- 2. Brno University of Technology
- 3. International Collaboration
- 4. Project Work Model Based Design
- 5. Steps of the Solution
- 6. Conclusions

HOME HOCHSCHULE MERSEBURG^{IM} University of Applied Sciences

Merseburg University of Applied Sciences in Central Germany

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 3

HOME HOCHSCHULE MERSEBURG[™] University of Applied Sciences

Merseburg University of Applied Sciences

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 4

HOME HOCHSCHULE MERSEBURG^M University of Applied Sciences

Merseburg University of Applied Sciences Faculty of Engineering and Natural Sciences

 ~600 Students
 31 Professors and Lecturers
 70 Employees

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 5

HOCHSCHULE MERSEBURG" University of Applied Sciences

Brno, the Capital City of Moravia, CR

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 6

HOME HOCHSCHULE MERSEBURG" University of Applied Sciences


BUT – Brno University of Technology

BUT – Brno University of Technology FSI/FME – Faculty of Mechanical Engineering

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 8

HOME HOCHSCHULE MERSEBURG" University of Applied Sciences

International Collaboration

- Start with diploma thesis in 2004
- Annual exchange of lectures with TSM Teaching Staff Mobility Programme (ERASMUS)
- Exchange of students with Short Time Excursion starting 2010

Further goals:

- Development of a double diploma master study course in mechatronics
- PhD students from Merseburg in Brno
- Use of video conferences for defences of appropriate theses

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 9

International Collaboration

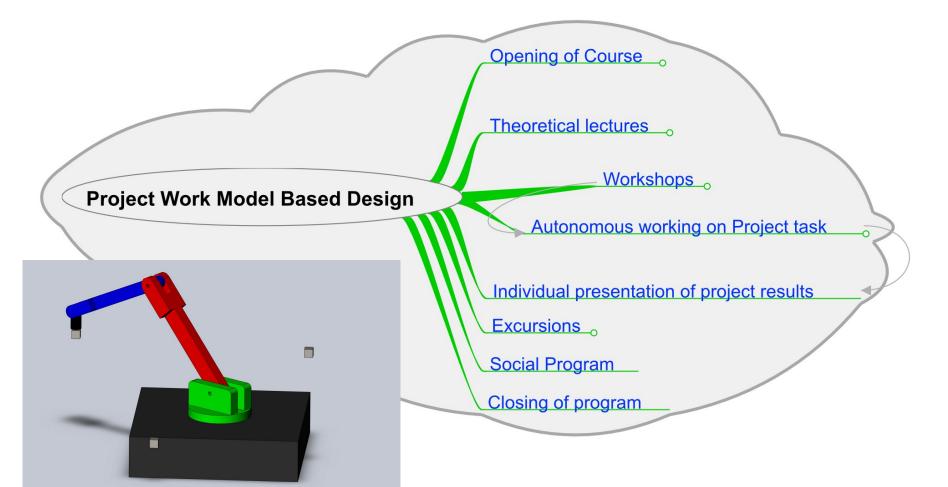
Students group from Merseburg in Brno

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 10

HOME MCHSCHULE MERSEBURG" University of Applied Sciences

Module Description

Study Course	Master "Mechatronics, Industrial and Physics Technology" (M.Eng.)		
Module No / Module Name:	M 06xx / Project Work Model Based Design		
Abbr.:	PME		
Second Name:			
Module Form:	Technical compulsory optional subject, lectures and practical work		
Semester:	3		
Cycle:	Annually, on request		
Person in Charge:	Prof. Dr. M. Lohöfener		
Lecturer:	Prof. Dr. M. Lohöfener, Prof. Dr. T. Březina		
Language:	German and English		
Assignment to the Curriculum:	M.Eng. "Mechatronics, Industrial and Physics Technology", in 3 rd semester, technical compulsory optional subject in study orientation "Mechatronics"		
Teaching Methods / SWS (teaching hours per week)	1 SWS lectures, 3 SWS practical work with maximum 15 students		
Effort:	Activity	Effort	Hours per semester
	Time of attendance (lectures, practical work)	4 SWS · 15 weeks	60 hours
	Private study and exam		90 hours
	Effort for the module		150 hours


Module Description

Credit points:	5 CP		
Requirements:	Mechatronic Systems (Module M 0101)		
Educational Objective:	 "Knowledges": The students deal with the abstraction of technical systems to system models and their simulation. They know approaches and important software for modelling especially for mechanical systems. "Skills": 		
	After finishing this module the students are able:		
	• To describe functions in technical systems and		
	• To simulate models of mechanical systems.		
	"Competencies":		
	• Analysis of complex tasks and derivation of necessary steps to the solution		
	Choose of applicable solution methods		
	Choose of applicable computer software for the solution		
Content:	 ✓ Building of models of systems ✓ Software tools ✓ Simulation with HiL (Hardware in the Loop) and SiL (Software in the Loop) 		
Exams:	Oral presentation 30 Minutes Prerequisites for admission to examination: Oral intermediate presentation and participation in study trip to Brno University of Technology BUT		

Ideas for Module and Example

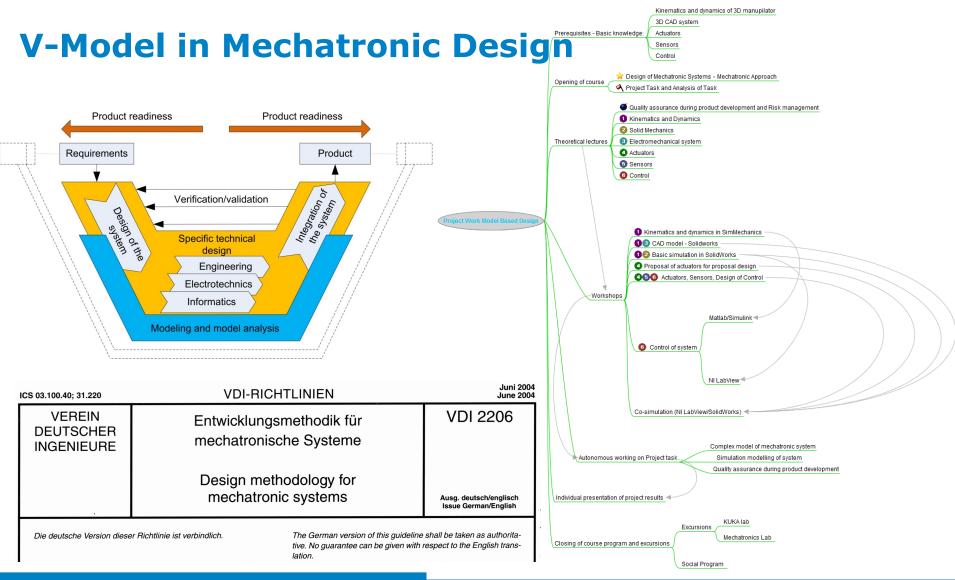
Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 13

HOCHSCHULE HOCHSCHULE MERSEBURG" University of Applied Sciences

Detailed Programme

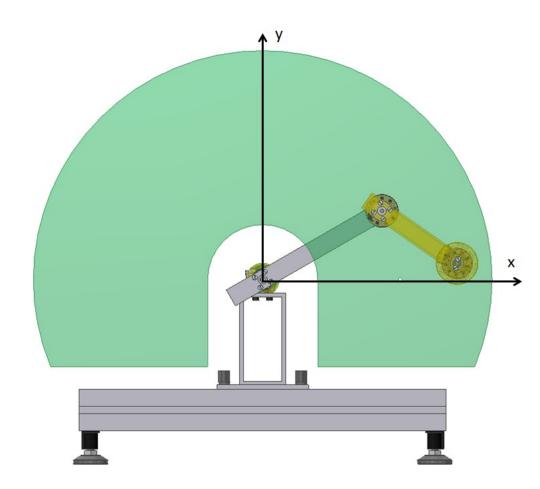
Day	Lesson		
Monday	Opening		
	Design of Mechatronic Systems		
	TRIZ		
	Project Task and Analysis Task		
	Block of Theoretical Lectures		
Tuesday	Workshop MATLAB / Simulink / SimMechanics		
	Autonomous Working on Project Task		
	Workshop CAD Solidworks		
	Workshop ANSYS Workbench		
	Workshop Actuators		

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 14


HOCHSCHULE MERSEBURG" University of Applied Sciences

Detailed Programme

Day	Lesson		
Wednesday	Lecture on Quality in Development		
	Workshop on Actuators and Sensors		
	Workshop on Control		
	Autonomous Working on Project Task		
	Workshop on Co-Simulation		
Thursday	Social Programme		
Friday	Autonomous Working on Project Task		
	Individual Presentation of Project Results		
	Closing Programme		



Example: Planar Manipulator with 2 DOF

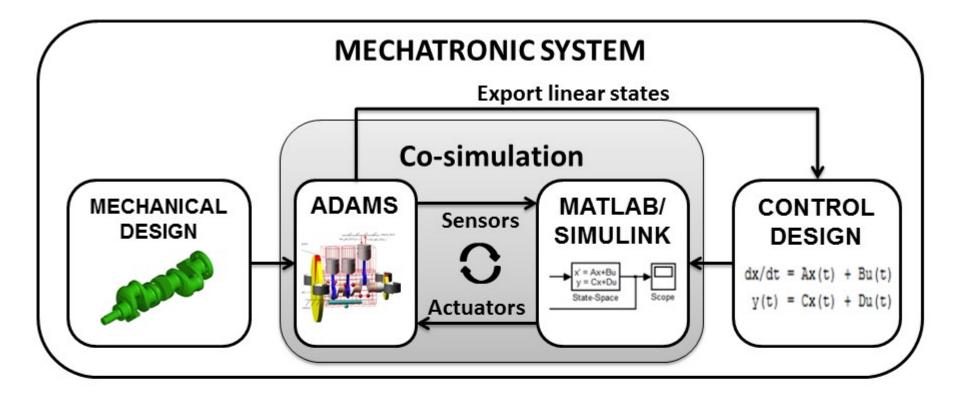
 $\frac{\text{Workspace}: 0 \le \varphi \le \pi}{150 \le r \le 500 \text{ mm}}$

<u>Objects</u> manipulated inside the workspace, trajectories not defined

<u>Geometry</u> of the manipulated objects neglected

Weight of the objects: 0.5 kg

<u>Change</u> of the position: From 150 mm to 500,0 mm in 4 s


Positioning <u>accuracy</u>: ±5 mm

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 17

HOME HOCHSCHULE MERSEBURG" University of Applied Sciences

Design and Simulation

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 18

FACHBEREICH UURGIN INGENIEUR- UND NATURWISSEN-SCHAFTEN

1. Solution analysis

- Choice of the lengths of the links
- Creation of the conceptual model for the kinematics description
- 2. Analysis of potential development risks
- 3. Analysis of the kinematics
 - Velocities of the end-effector in the workspace
 - Requirements for the actuators velocities
 - Analytic / simulation modeling
 - Simulink / SimMechanics

4. CAD model – *SolidWorks*

- Creation of the conceptual model
- Parametric model of the geometry
- Inputs for the analytic model of dynamics
 - Masses
 - Inertia moments
- Possibility of static, kinematic, dynamic and stress/strain analyses
- Possibility of the connection with *LabVIEW* and implementation of the control
 - Co-simulations

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 20

FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

5. Simulation model Simulink / SimMechanics

- Creation of the simulation model
- Testing of the model
- Inputs for the model according to the CAD parameters
 - Masses
 - Inertia moments
- Analysis of dynamics

6. Design of the actuator based on the analysis of the dynamics

- Utilization of simulation model for the actuators design according to the velocity requirements
- Implementation of the actuators to dynamics model

7. Change of the geometry parameters (e.g. sections)

- There are changed parameters of the SolidWorks model according to the dynamics simulations. The changes will reflect in masses and inertia moments of the elements
- Verification of the changed parameters in the model of dynamics

8. Structural calculations (SolidWorks - ANSYS)

- Method of finite elements
- Stress/strain verification based on the loads from the model of the dynamics
- Modal analysis of the potentially elastic bodies

9. Design of a control (state-space MATLAB)

- Utilization of the dynamics *SimMechanics* model for the controller design
- Simulation modeling of the control MATLAB / Simulink
- 10. Simulation experiment according to the assignment
- **11. Hardware Sensors Actuators**
 - Selection of the sensors
 - Implementation of the sensors and actuators
 - Realization of drivers in *LabVIEW*

12. Design of the control in *LabVIEW*

13. Possibility of a co-simulation *LabVIEW / SolidWorks*

- Basic control of the actuators (under development for the complete dynamics)
- Virtual prototype of the mechatronic system

14. Mechatronic approach

- Particular cycles of the development
- Increasing of the manipulator maturity

15. TRIZ utilization

- Heuristics for the selected physical conflicts
- (stiffness of the link vs. moment of inertia)

INGENIEUR- UND

NATURWISSEN-

Presentation of the Results: Excellent!

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 25

HOME HOCHSCHULE MERSEBURG" University of Applied Sciences

Conclusions by our Students

- Repetition of important basics
- Basics in working with SolidWorks
- Further information about MATLAB and LabVIEW

- New interesting experience in using interfaces in modelling software
- International teamwork and improving English knowledge → Soft Skills

Conclusions

- The students are informed about the necessary simplifications and their possible consequences.
- Prepared functions and models allow quick demonstrations and comfortable experimenting with the control design.
- The students were able to develop and work with the models, to explain the graphs, to animate the behaviour of the models and to optimize the manipulator.
- They were very enthusiastic and appreciated the value of this module.

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 27

HOME HOCHSCHULE MERSEBURG" INGENIEUR- UND NATURWISSEN-SCHAFTEN

University of

pplied Sciences

Conclusions

- The students are informed about the necessary simplifications and their possible consequences.
- Prepared functions and models allow quick demonstrations and comfortable experimenting with the control design.

The students were able to develop and work with the models, to explain the graphs, to an-imate the behaviour of the models and to optimize the manipulator.

 They were very enthusiastic and appreciated the value of this module.

Manfred Lohöfener, Tomáš Březina Experience with International Students' Project Work in Model Based Design 15/09/11 | Page 28

HOME HOCHSCHULE MERSEBURG^{IM} University of Applied Sciences